0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое турбина? Виды турбин

Что такое турбина? Виды турбин. Устройство и принцип действия турбины

В этой статье мы ознакомимся с ответом на вопрос, что такое турбина. Здесь читатель найдет информацию о ее характеристике, видах и способах эксплуатации человеком, а также рассмотрим исторические сведенья, связанные с развитием этого механического устройства.

Введение

Что такое турбина и как она действует? Это лопаточная система (машина), которая занимается преобразованием энергий: внутренней и/или кинетической. Этот ресурс дает рабочее тело и позволяет выполнять валу его механическое предназначение. На лопатки оказывают воздействие посредством струи рабочего тела, что закрепляют около окружностей роторов. Она же приводит к их движению.

Может находить свое применение в качестве турбины электростанций (АЭС, ТЭС, ГЭС), фрагмента приводов для различного типа транспортов, а также может служить составной частью гидронасосов и газотурбинных двигателей. Настоящая энергетическая промышленность не способна обходиться без этих устройств. Вид теплопередачи вращения турбины на тепловых электростанциях, обладает высокой производительностью, он очень энергоемкий. Это позволяет человеку использовать различные ресурсы в относительно малых количествах, в сравнение с объемом получаемого электричества.

Исторические данные

Множество попыток создать устройство, схожее с современной турбиной, было совершено еще задолго до ее полноценного вида, приобретенного ею в конце девятнадцатого века. Первая попытка принадлежит Герону Александрийскому (1 век н.э.).

И. В. Линде утверждал, что именно в XIX веке была рождена масса планов и проектов, позволивших человеку превзойти «материальные трудности», мешающие выполнению и созданию такой техники. Главными событиями тех годов являлось развитие термодинамической науки, а также металлургической и машиностроительной отраслей. В конце XIX два ученых, по отдельности и независимо, смогли создать паровую турбину, пригодную в различных отраслях промышленности. Это были Густав Лаваль родом из Швеции и Чарлз Парсонс родом из Великобритании.

Хронологические данные событий

А теперь ознакомимся с некоторыми событиями, связанными с историей изобретения турбины:

  • В I в. н. э. паровую турбину попытался создать Герон Александрийский, однако несколько столетий после этого ее не изучали в силу ошибочного мнения о несостоятельности идеи.
  • В 1500 г. можно найти упоминание о «дымовом зонте» — приборе, поднимающем горячие потоки воздуха от пламени через лопасти, соединенные между собой и вращающие вертел.
  • Джованни Бранкой в 1629 г., было совершено создание турбины, лопатки которой поднимались за счет действия сильной струи пара.
  • В 1791 г., Джоном Барбером родом из Англии было приобретено право на владение патентом, который позволил ему стать первым обладателем и создателем современной газовой турбины.
  • Турбины, работающие на воде, впервые были созданы в 1832 г. французским ученым Бюрденом.
  • В 1894 г. была запатентована идея о корабле, который заставляла двигаться паровая турбина, а его обладателем стал Сэр Ч. Парсонс.
  • 1903 год: Эджидиус Эллинг из Норвегии сконструировал первую в своем роде турбинную систему на газе, которая смогла передавать больше энергии, чем затрачивать на внутреннее обслуживание компонентов самой турбины. Эта технология стала значительным прорывом тех времен. Проблемы обуславливались недостаточным уровнем развития термодинамических знаний, однако были преодолены.
  • В 1913 году Никола Тесла стал обладателем патента на турбину, работающую на основе эффекта пограничного слоя.
  • 1920 год: практическая теория протекания газового потока через каналы позволила сформулировать четкие данные для развития теоретического представления о процессе протекания, в котором газ движется вдоль аэродинамической плоскости. Эта работа была проделана доктором А. А. Грифицем.
  • Для самолета турбина реактивного движения была создана Сэром Ф. Уиттлом, а сам двигатель тестировали с успехом в апреле 1937 г.

Труды Густава Лаваля

Первым создателем турбины на пару стал Густав Лаваль, изобретатель родом из Швеции. Бытует мнение о том, что к конструированию такого механизма его привело желание обеспечить собственноручно сделанный сепаратор для молока механическим действием, выполняющимся без прямого вмешательства человеком. Двигатели тех времен не позволяли создавать необходимую скорость вращения.

Рабочим телом в машине Лаваля послужил пар. В 1889 году он сделал дополнение сопла турбин, на которые поставил конические расширители. Его труд стал инженерным прорывом, и это ясно, ведь анализ величины нагрузки, которую оказывали на рабочее колесо, показывает, что она была сверхсильной. Такое воздействие даже при малейшем нарушении привело бы к сбою в удержании центра тяжести и вызвало бы незамедлительное возникновение неполадок в работе подшипников. Избежать такой проблемы изобретатель смог при помощи использования тонкой оси, прогибающейся при вращении.

Чарлз Парсонс и его работа

Чарлзу Парсонсу был присвоен патент на изобретение первой многоступенчатой турбины, а сделал он это в 1884 году. Работа механизма приводила в действие устройство электрогенератора. Годом позже, в 1885-м, он модифицировал свою же версию, начавшую масштабно распространяться и применяться на электростанциях. Устройство обладало выравнивающим аппаратом, который образовывался из венцов, с лопатами турбины, которые направлялись в обратную сторону. Сами венцы оставались неподвижными. Механизм имел 3 ступени с разными показателями силы давления и геометрическими параметрами лопаток, а также путями их установления. Турбина использовала как активную, так и реактивную силу.

Устройство турбины

Теперь мы рассмотрим вопрос, что такое турбина, углубившись в механизм ее действия.

Турбинная ступень образуется при помощи двух главных частей:

  1. Рабочего колеса (лопатки на роторе, непосредственно создающие вращение);
  2. Соплового механизма (лопатки стартера, отвечающие за поворот рабочего тела, который придаст потоку нужный угол для атаки в отношении к рабочему колесу).

В зависимости от направления движения потоков рабочие тела можно разделить на аксиальные и радиальные турбинные механизмы. У первых поток р. т. движется по направлению вдоль турбинной оси. Радиальными называют турбины, у которых поток направляется перпендикулярно валовой оси.

Количество контуров позволяет разделять такие механизмы на одно-, двух- и трехконтурные. Иногда можно встретить турбины с четырьмя или пятью контурами, но это крайне редкое явление. Многоконтурное устройство турбины дает возможность пользоваться большими скачками в тепловых перепадах энтальпии. Это обуславливается размещением большого числа ступеней с разным давлением, а также влияет на мощность турбины.

В соответствии с количеством валов можно различать одно-, двух- и иногда трехвальные турбины. Они связываются общими параметрами тепловых явлений или механизмом редуктора. Валы могут располагаться коаксиально и параллельно.

Устройство и принцип действия турбины следующие: в местах, где происходит проход вала через стенки корпуса, располагаются утолщения, которые предупреждают утечку рабочего тела наружу и засасывание воздуха в корпус.

Передний конец вала оборудован предельным регулятором, который в случае необходимости автоматически остановит турбину. Это случается, например, в результате повышения показателя вращательной частоты, которая допустима для конкретного устройства.

Преобразование энергии газа

Что такое турбина? В общем виде – это машина, предназначение которой заключается в преобразовании энергии в работу. Их существует несколько видов, и одним из таких является газовая турбина.

Устройство газовой турбины основано на переводе энергетического потенциала газа в сжатом или нагретом состоянии в работу, которую выполняет механизм вала. Главные элементы — это ротор и статор. Свое применение находит в качестве детали газотурбинного двигателя, ГТУ и ПГУ.

Механизм газовой турбины

Работа турбины осуществляется, когда сопловой аппарат пропускает газы под давлением внутрь корпуса, в те места, где оно небольшое. При этом молекулы газа расширяются и ускоряются. Далее они попадают на поверхность рабочих лопаток и отдают им процент своего кинетического заряда энергии. Происходит сообщение крутящего момента лопаток.

Механическое устройство газовой турбины может быть гораздо проще, чем поршневого двигателя внутреннего сгорания. Современные турбореактивные двигатели могут обладать несколькими валами и сотнями лопаток как на стартере, так и на валу. Примером могут служить турбины самолетов. Их характеристикой также является наличие сложной системы расположения трубопровода, теплообменников и камер, предназначенных для сгорания.

Подшипники как радиального, так и упорного типа служат критическим элементом в этой разработке. Традиционно применялись гидродинамические или охлаждаемые маслом шарикообразные подшипники, однако в скором времени их обошли воздушные. По сей день их применяют для создания микротурбин.

Тепловые двигатели

Тепловая турбина преобразовывает работу, выполняемую паром, в механическую. Внутри лопаточного аппарата происходит превращение потенциальной энергии пара в нагретом и сжатом состоянии в кинетическую форму. Последняя, в свою очередь, преобразуется в механическую и обуславливает вращение вала.

Поступление пара происходит посредством парокотельного устройства и направляется на каждую криволинейную лопатку, закрепленную по окружности ротора. Далее пар воздействует на нее, и все вместе лопатки заставляют ротор вращаться. Турбина на пару является элементом ПТУ. Турбоагрегат образуется при помощи совмещения работы паровой турбины и электрогенератора.

Основная часть парового двигателя

Паровые механизмы образуются, так же, как и газовые, при помощи ротора и статора. На первом закрепляются способные к движению лопатки, а на последнем – не способные.

Движение потока протекает в соответствии с аксиальной или радиальной формой, что зависит от типа направления потоков пара. Аксиальная форма характеризуется перемещением пара периметра оси, котором обладает турбина. Радиальная турбина обладает потоками паров, которые двигаются перпендикулярно. При этом лопатки располагают параллельно к оси, по которой происходит вращение. Могут иметь от одного до пяти цилиндров. Число валов также может варьироваться. Существуют устройства, располагающие одним, двумя или тремя валами.

Корпус – это неподвижная часть, которую именуют статором. Он обладает рядом выточек, в которые устанавливаются диафрагмы, с соответствующими плоскости разъема турбинного корпуса разъемами. По их периферии размещают ряд сопловых каналов (решеток), которые образуются посредством криволинейных лопаток, залитых в диафрагму или приваренных к ней.

Турбокомпрессор

Существует механизм, который использует отработавшую часть газов с целью увеличения показателя давления в пространстве впускной камеры. Такой агрегат называют турбокомпрессором.

Основные части представлены доцентровым или осевым компрессором и газовой турбиной, необходимой для приведения его в действие. Обладает одним валом. Главная функция заключается в повышении давления, оказываемого рабочим телом. Это становится возможным в силу нагревания газотурбинного двигателя работой самого компрессора, приобретающего мощность благодаря турбине.

В заключение

Теперь читатель располагает общими представлениями об устройстве, принципе работы, механизме действия, способах эксплуатации турбин. Здесь также были рассмотрены конкретные виды турбин, отличающиеся видом рабочего тела, и исторические сведенья, показывающие общий ход развития данных механизмов. Подведя итоги, можно сказать, что турбины – это устройства, преобразовывающие энергию. Попытки их создания были совершены еще задолго до нашей эры. В настоящее время они широко используются человеком в различных отраслях промышленности, что значительно упрощает процесс работы, усиливает производительность и позволяет совершать механические действия, ранее недоступные человечеству.

Что такое турбонаддув

Такая вот небольшая с виду «улитка» — один из самых действенных способов увеличить мощность двигателя.

Несомненно, каждый из нас хоть раз в жизни замечал на обычном с виду автомобиле шильдик «turbo». Производители, как нарочно, делают эти шильдики небольшого размера и размещают в неприметных местах так, что непосвящённый прохожий не заметит и пройдёт мимо. А понимающий человек непременно остановится и заинтересуется автомобилем. Ниже приводится рассказ о причинах такого поведения.

Автомобильные конструкторы (с момента появления на свете этой профессии) постоянно озабочены проблемой повышения мощности моторов. Законы физики гласят, что мощность двигателя напрямую зависит от количества сжигаемого топлива за один рабочий цикл. Чем больше топлива мы сжигаем, тем больше мощность. И, скажем, захотелось нам увеличить «поголовье лошадей» под капотом — как это сделать? нас и поджидают проблемы.

Дело в том, что для горения топлива необходим кислород. Так что в цилиндрах сгорает не топливо, а топливно-воздушная смесь. Мешать топливо с воздухом нужно не на глазок, а в определённом соотношении. К примеру, для бензиновых двигателей на одну часть топлива полагается частей воздуха — в зависимости от режима работы, состава горючего и прочих факторов.

Как мы видим, воздуха требуется весьма много. Если мы увеличим подачу топлива (это не проблема), нам также придётся значительно увеличить и подачу воздуха. Обычные двигатели засасывают его самостоятельно разницы давлений в цилиндре и в атмосфере. Зависимость получается прямая — чем больше объём цилиндра, тем больше кислорода в него попадёт на каждом цикле. Так и поступали американцы, выпуская огромные двигатели с умопомрачительным расходом горючего. А есть ли способ загнать в тот же объём больше воздуха?

Есть, и впервые придумал его господин Готтлиб Вильгельм Даймлер (Gottlieb Wilhelm Daimler). Знакомая фамилия? Ещё бы, именно она используется в названии DaimlerChrysler. Так вот, этот немец весьма неплохо соображал в моторах и ещё в 1885 году придумал, как загнать в них больше воздуха. Он догадался закачивать воздух в цилиндры с помощью нагнетателя, представлявшего собой вентилятор (компрессор), который получал вращение непосредственно от вала двигателя и загонял в цилиндры сжатый воздух.

Швейцарский инженер-изобретатель Альфред Бюхи (Alfred J. Büchi) пошёл ещё дальше. Он заведовал разработкой дизельных двигателей в компании Sulzer Brothers, и ему категорически не нравилось, что моторы были большими и тяжёлыми, а мощности развивали мало. Отнимать энергию у «движка», чтобы вращать приводной компрессор, ему также не хотелось. Поэтому в 1905 году господин Бюхи запатентовал первое в мире устройство нагнетания, которое использовало в качестве движителя энергию выхлопных газов. Проще говоря, он придумал турбонаддув.

Идея умного швейцарца проста, как всё гениальное. Как ветра вращают крылья мельницы, также и отработавшие газы крутят колесо с лопатками. Разница только в том, что колесо это очень маленькое, а лопаток очень много. Колесо с лопатками называется ротором турбины и посажено на один вал с колесом компрессора. Так что условно турбонагнетатель можно разделить на две части — ротор и компрессор. Ротор получает вращение от выхлопных газов, а соединённый с ним компрессор, работая в качестве «вентилятора», нагнетает дополнительный воздух в цилиндры. Вся эта мудрёная конструкция и называется турбокомпрессор (от латинских слов turbo — вихрь и compressio — сжатие) или турбонагнетатель.

В турбомоторе воздух, который попадает в цилиндры, часто приходится дополнительно охлаждать — тогда его давление можно будет сделать выше, загнав в цилиндр больше кислорода. Ведь сжать холодный воздух (уже в цилиндре ДВС) легче, чем горячий.

Воздух, проходящий через турбину, нагревается от сжатия, а также от деталей турбонаддува, разогретого выхлопными газами. Подаваемый в двигатель воздух охлаждают при помощи так называемого интеркулера (промежуточный охладитель). Это радиатор, установленный на пути воздуха от компрессора к цилиндрам мотора. Проходя через него, он отдаёт своё тепло атмосфере. А холодный воздух более плотный — значит, его можно загнать в цилиндр ещё больше.

Чем больше выхлопных газов попадает в турбину, тем быстрее она вращается и тем больше дополнительного воздуха поступает в цилиндры, тем выше мощность. Эффективность этого решения по сравнению, например, с приводным нагнетателем в том, что на «самообслуживание» наддува тратится совсем немного энергии двигателя — всего 1,5%. Дело в том, что ротор турбины получает энергию от выхлопных газов не за счёт их замедления, а за счёт их охлаждения — после турбины выхлопные газы идут быстро, но более холодные. Кроме того, затрачиваемая на сжатие воздуха даровая энергия повышает КПД двигателя. Да и возможность снять с меньшего рабочего объёма большую мощность означает меньшие потери на трение, меньший вес двигателя (и машины в целом). Всё это делает автомобили с турбонаддувом более экономичными в сравнении с их атмосферными собратьями равной мощности. Казалось бы, вот оно, счастье. Ан нет, не всё так просто. Проблемы только начались.

, скорость вращения турбины может достигать 200 тысяч оборотов в минуту, , температура раскалённых газов достигает, только попробуйте представить, 1000°C! Что всё это означает? То, что сделать турбонаддув, который сможет выдержать такие неслабые нагрузки длительное время, весьма дорого и непросто.

По этим причинам турбонаддув получил широкое распространение только во время Второй мировой войны, да и то только в авиации. В годах американская компания Caterpillar сумела приспособить его к своим тракторам, а умельцы из Cummins сконструировали первые турбодизели для своих грузовиков. На серийных легковых машинах турбомоторы появились и того позже. Случилось это в 1962 году, когда почти одновременно увидели свет Oldsmobile Jetfire и Chevrolet Corvair Monza.

Но сложность и дороговизна конструкции — не единственные недостатки. Дело в том, что эффективность работы турбины сильно зависит от оборотов двигателя. На малых оборотах выхлопных газов немного, ротор раскрутился слабо, и компрессор почти не задувает в цилиндры дополнительный воздух. Поэтому бывает, что до трёх тысяч оборотов в минуту мотор совсем не тянет, и только потом, тысяч после четырёх-пяти, «выстреливает». Эта ложка дёгтя называется турбоямой. Причём чем больше турбина, тем она дольше будет раскручиваться. Поэтому моторы с очень высокой удельной мощностью и турбинами высокого давления, как правило, страдают турбоямой в первую очередь. А вот у турбин, создающих низкое давление, никаких провалов тяги почти нет, но и мощность они поднимают не очень сильно.

Почти избавиться от турбоямы помогает схема с последовательным наддувом, когда на малых оборотах двигателя работает небольшой малоинерционный турбокомпрессор, увеличивая тягу на «низах», а второй, побольше, включается на высоких оборотах с ростом давления на выпуске. В прошлом веке последовательный наддув использовался на суперкаре Porsche 959, а сегодня по такой схеме устроены, например, турбодизели фирм BMW и Land Rover. В бензиновых двигателях Volkswagen роль маленького «заводилы» играет приводной нагнетатель.

На рядных двигателях зачастую используется одиночный турбокомпрессор (пара «улиток») с двойным рабочим аппаратом. Каждая из «улиток» наполняется выхлопными газами от разных групп цилиндров. Но при этом обе подают газы на одну турбину, эффективно раскручивая её и на малых, и на больших оборотах

Но чаще по-прежнему встречается пара одинаковых турбокомпрессоров, параллельно обслуживающих отдельные группы цилиндров. Типичная схема для турбомоторов, где у каждого блока свой нагнетатель. Хотя двигатель V8 фирмы M GmbH, дебютировавший на автомобилях BMW X5 M и X6 M, оснащён перекрёстным выпускным коллектором, который позволяет компрессору получать выхлопные газы из цилиндров разных блоков, работающих в противофазе.

Заставить турбокомпрессор работать эффективнее во всём диапазоне оборотов, можно ещё изменяя геометрию рабочей части. В зависимости от оборотов внутри «улитки» поворачиваются специальные лопатки и варьируется форма сопла. В результате получается «супертурбина», хорошо работающая во всём диапазоне оборотов. Идеи эти витали в воздухе не один десяток лет, но реализовать их удалось относительно недавно. Причём сначала турбины с изменяемой геометрией появились на дизельных двигателях, благо, температура газов там значительно меньше. А из бензиновых автомобилей первый примерил такую турбину Porsche 911 Turbo.

Конструкцию турбомоторов довели до ума уже давно, а в последнее время их популярность резко возросла. Причём турбокомпрессоры оказалось перспективным не только в смысле форсирования моторов, но и с точки зрения повышения экономичности и чистоты выхлопа. Особенно актуально это для дизельных двигателей. Редкий дизель сегодня не несёт приставки «турбо». Ну а установка турбины на бензиновые моторы позволяет превратить обычный с виду автомобиль в настоящую «зажигалку». Ту самую, с маленьким, едва заметным шильдиком «turbo».

Как работает турбонаддув

Турбокомпрессор или попросту турбина – это дополнительное устройство двигателя, которое для своей работы использует энергию отработавших газов. Что позволяет увеличить мощность двигателя на величину от 25% до 100%. Прежде чем понять, как работает турбокомпрессор, стоит рассмотреть функционирование двигателя внутреннего сгорания.

Принцип работы ДВС

Любой двигатель внутреннего сгорания, дизельный или бензиновый, работает на принципе получения энергии, образующейся от воспламенения топливовоздушной смеси в камерах сгорания. Через впускные клапаны в цилиндр подается отфильтрованный внешний воздух и впрыскивается топливо, причем при пассивной подаче воздуха, в цилиндр подается дозированное количество топлива. Именно эта смесь сгорает в цилиндре и заставляет двигаться поршень, который передает свою кинетическую энергию на ходовую систему автомобиля. Чем больше такой смеси подается и сгорает в цилиндрах, тем больше выходной крутящий момент и соответственно выше общая мощность мотора.

Принцип работы турбины

Для увеличения подачи воздуха в цилиндр, без изменения объема самого цилиндра, используют турбокомпрессор. При работе турбины используются продукты сгорания топливной смеси, которые приводят в действие роторный механизм турбокомпрессора, с помощью которого атмосферный воздух принудительно нагнетается в цилиндры (турбонаддув). И, благодаря этому, в цилиндр подается и большая дозировка топлива. Во время нагнетания, воздух может нагреваться, из-за чего уменьшается его плотность и масса в цилиндрах. Для подачи большего количества воздуха, его необходимо охладить. Для лучшего охлаждения используется радиаторное устройство, называемое интеркулером, который устанавливается на выходе из холодной части турбокомпрессора и через который проходит воздух перед попаданием в цилиндры. На следующем этапе поршень всасывает этот охлажденный воздух через впускные клапаны и одновременно в камеру сгорания подается топливо, образуется топливовоздушная смесь. Возгорание топливной смеси происходит от искры (бензиновые двигатели), либо от сжатия (дизельные двигатели). После того, как произошло сгорание порции смеси, продукты горения выбрасываются через выпускной клапан и попадают снова в турбину, на ее ротор. Таким образом, она работает без участия движущих частей двигателя, используя энергию потока выхлопных газов.

Для каждого двигателя турбокомпрессор подбирается индивидуально, исходя из его собственной мощности и объема. Причем величина наддува зависит от геометрических параметров (размеров) улиток, компрессорного колеса, ротора турбины. Некоторые конструкции двигателей оборудуют не одной турбиной, а двумя: одинакового размера – би-турбо, разного размера – твин-турбо. В последнее время широкое распространение получили турбокомпрессоры с механизмом изменяемой геометрии. Стоит отметить, что сложность, а соответственно и стоимость ремонта турбины зависит от ее конструктивных особенностей и модификации.

Механизм изменяемой геометрии

Такой механизм позволяет дозировать подачу отработавших газов на колесо в турбине (ротор). Тем самым, позволяет оптимизировать работу турбокомпрессора на различных оборотах.

Это достигается за счет движения специальных лопаток, смонтированных на кольце геометрии. Они синхронно передвигаются, получая движение от вакуумного актуатора или электронного сервопривода в определенный момент, и контролируют наддув. Как правило, устанавливаются они на дизельных ДВС, потому как температура выхлопных газов у бензиновых моторов выше, чем у дизеля, соответственно лопатки геометрии могут деформироваться. Такие турбины позволяют оптимизировать процесс турбонаддува, что приводит к уменьшению расхода топлива и вредных выбросов при одновременном повышении мощности и крутящего момента.

Многие автомобилисты ошибочно полагают, что турбокомпрессор начинает включаться в работу с оборотов мотора от 1500-2000 об/мин. На самом деле, он запускается сразу после заводки автомобиля и работает на холостом ходу. А оптимальных оборотов достигает в диапазоне свыше 1500 об/мин.

Турбокомпрессор достаточно надежный агрегат, однако если Вы столкнулись с его поломкой, решить проблему Вам помогут специалисты ТурбоМикрон. Мы производим замену турбины на автомобиле, а также ремонт снятых с авто турбокомпрессоров.

ЧТО ТАКОЕ ТУРБИНА И КАК РАБОТАЕТ ТУРБО МОТОР Часть 1.

Основы турбо-наддува. Часть 1.

Основные принципы работы турбо двигателя.

Как известно, мощность двигателя пропорциональна количеству топливо-воздушной смеси попадающей в цилиндры. При прочих равных, двигатель большего объема пропустит через себя больше воздуха и, соответственно, выдаст больше мощности, чем двигатель меньшего объема. Если нам требуется что бы маленький двигатель выдавал мощности как большой или мы просто хотим что бы большой выдавал еще больше мощности, нашей основной задачей станет поместить больше воздуха в цилиндры этого двигателя. Естественно, мы можем доработать головку блока и установить спортивные распредвалы, уеличив продувку и количество воздуха в цилиндрах на высоких оборотах. Мы даже можем оставить количество воздуха прежним, но поднять степень сжатия нашего мотора и перейти на более высокий октан топлива, тем самым подняв КПД системы. Все эти способы действенны и работают в случае когда требуемое увеличение мощности составляет 10-20%. Но когда нам нужно кардинально изменить мощность мотора — самым эффективным методом будет использование турбокомпрессора.

Каким же образом турбокомпрессор позволит нам получить больше воздуха в цилиндрах нашего мотора? Давайте взгянем на приведенную ниже диаграмму:

Рассмотрим основные этапы прохождения воздуха в двигателе с турбокомпрессором:

— воздух проходит через воздушный фильтр (не показан на схеме) и попадает на вход турбокомпрессора (1)
— внутри турбокомпрессора вошедший воздух сжимается и при этом увеличивается количество кислорода в единице объема воздуха. Побочным эффектом любого процесса сжатия воздуха является его нагрев, что несколько снижает его плотность.
— Из турбокомпрессора воздух поступает в интеркулер (3) где охлаждается и в основной мере восстанавливает свою температуру, что кроме увеличения плотности воздуха ведет еще и к меньшей склонности к детонации нашей будущей топливо-воздушной смеси.
— После прохождения интеркулера воздух проходит через дросеель, попадает во впускной коллектор (4) и дальше на такте впуска — в цилиндры нашего двигателя.
Объем цилиндра является фиксированной величиной, обусловленной его диаметром и ходом поршня, но так как теперь он заполняется сжатым турбокомпрессором воздухом, количество кислорода зашедшее в цилиндр становится значительно больше чем в случае с атмосферным мотором. Большее количество кислорода позволяет сжечь большее количество топлива за такт, а сгорание большего количества топлива ведет к увеличению мощности выдаваемой двигателем.
— После того как топливо-воздушная смесь сгорела в цилиндре, она на такте выпуска уходит в выпускной коллекторе (5) где этот поток горячего (500С-1100С) газа попадает в турбину (6)
— Проходя через турбину поток выхлопных газов вращает вал турбины на другой стороне которого находится компрессор и тем самым совершает работу по сжатию очередной порции воздуха. При этом происходит падение давления и температуры выхлопного газа, поскольку часть его энергии ушла на обеспечение работу компрессора через вал турбины.

Ниже приведена схема внутреннего устройства турбокомпрессора:

В зависимоти от конкретного мотора и его компоновки под капотом, турбокомпрессор может иметь дополнительные встроенные элементы, такие как Wastegate и Blow-Off. Рассмотрим их подробнее:

Blow-off
Блоуофф (перепускной клапан) это устройство установленное в воздушной системе между выходом из компрессора и дроссельной заслонкой с целью недопустить выход компрессора на режим surge. В моменты когда дроссель резко закрывается, скорость потока и расход воздуха в системе резко падает, при этом турбина еще некоторое время продолжает вращаться по инерции со скоростью не соответствующей новому упавшему расходу воздуха. Это вызывает циклические скачки давления за компрессором и слышимый характерный звук прорывающегося через компрессор воздуха. Surge со временем приводит к выходу из строя опорных подшипников турбины, в виду значительной наргрузки на них в этих переходных режимах. БлоуОфф использует комбинацию давлений в коллекторе и установленной в нем пружины что бы определить момент закрытия дросселя. В случае резкого закрытия дросселя блоуофф сбрасывает в атмосферу, возникающий в воздушном тракте избыток давления и тем самым спасает турбокомпрессор от повреждения.

Wastegate:
Представляет собой механический клапан устанавленный на турбинной части или на выпускном коллекторе и обеспечивающий контроль за создаваемым турбокомпрессором давлением. Некоторые дизельние моторы используют турбины без вейстгейтов. Тем не менее подавляющее большинство бензиновых моторов обязательно требуют его наличия. Основной задачей вейстгейта является обеспечивать выхлопным газам возможность выхода из системы в обход турбины. Пуская часть газов в обход турбины, мы контролируем количество энергии газов которое уходит через вал на компрессор и тем самым управляем давлением наддува, создаваемое компрессором. Как правило вейстгейт использует давление наддува и давление встроенной пружины что бы контролировать обходной поток выхлопных газов.
Встроенный вейстгейт состоит из заслонки встроенной в турбинный хаузинг (улитку), пневматического актуатора и тяги от актуатора к заслонке.
Внешний гейт представляет собой клапан устанавливаемый на выпускной коллектор до турбины. Преимуществом внешнего гейта является то, что сбрасываемый им обходной поток может быть возвращен в выхлопную систему далеко от выхода из турбины или вообще сброшен в атмосферу на спортивных автомобилях. Все это ведет к улучшению прохождения газов через турбину в виду отсутствия разнонаправленных потоков в компактном объеме турбинного хаузинга.

Водяное и маслянное обеспечение:
Шарикоподшипниковые турбины Garrett требуют значительно меньше масла чем втулочные аналоги. Поэтому установка маслянного рестриктора на входе в турбину крайне рекомендована если давление масла в вашей системе привышает 4 атм. Слив масла должен быть заведен в поддон выше уровня масла. Поскольку слив масла из турбины происходит естественным путем под действием гравитации, крайне важно что бы центральный картридж турбины был ориентирован сливом масла вниз.
Частой причиной выхода из строя турбин является закоксовка маслом в центральном картридже. Быстрая остановка мотора после больших продолжительных нагрузок ведет к теплообмену между турбиной и нагретым выпускным коллектором, что в отсутствии притока свежего масла и поступления холодного воздуха в компрессор ведет к общему перегреву картриджа и закоксовке имеющегося в нем масла.
Для минимизации этого эффекта турбины снабдили водяным охлаждением. Водные шланги обеспечивают эффект сифона снижая температуру в центральном картридже даже после остановки двигателя, когда нет принудительной циркуляции воды. Желательно так же обеспечить минимум неравномерности по вертикали линии подачи воды, а так же несколько развернуть центральный картридж вокруг оси турбины на угол до 25 градусов.

Правильный подбор турбины является ключевым моментом в постройке турбо-мотора и основан на многих вводных данных. Самым основным фактом выбора является требуемая от мотора мощность. Важно также выбирать эту цифру максимально реалистично для вашего мотора. Поскольку мощность мотора зависит от количества топливо-воздушной смеси которая через него проходит за единицу времени, опредлив целевую мощность мы приступим к выбору турбины способной обеспечить необходимый для этой мощности поток воздуха.

Другим крайне важным фактором выбора турбины является скорость ее выхода на наддув и минимальные обороты двигателя на которых это происходит. Меньшая турбина или меньший горячий хаузинг позволяют улучшить эти показатели, но максимальная мощность при этом будет снижена. Тем не менее за счет большего рабочего диапазона работы двигателя и быстрого выход турбины на наддув при открытии дросселя в целом результат может быть значительно лучше, чем при использовании большей турбины с большой пиковой мощностью, но в узком верхнем диапазоне работы мотора.

Втулочные и шарикоподшипниковые турбины.
Втулочные турбины были самыми распространенными в течении долгого времени, тем не менее новые и более эффективные шарикоподшипниковые турбины используются все чаще. Шарикоподшипниковые турбины появились как результат работы Garrett Motorsport во многих гоночных сериях.
Отзывчивость турбины на дроссель очень зависит от конструкции центрального картриджа. Шарикоподшипниковые турбины Garrett обеспечивают на 15% более быстрый выход на наддув относительно их втулочных аналогов, снижая эффект турбо-ямы и приближая ощущение от турбо-мотора к атмосферному большеобъемнику.
Шарикоподшипниковые турбины так же требуют значительно меньшего потока масла через картридж для смазки пошипников. Это снижает вероятность утечек масла через сальники. Так же такие турбины менее требовательны к качеству масла и менее склонны к закоксовке после глушения двигателя.

Как выглядит и где находится автомобильная турбина

Опубликовано Master в 13 марта, 2019

Двигатель является одним из наиболее важных компонентов автомобиля, а для его эффективной работы и максимальной производительности устанавливается турбина. Как выглядит и где находится автомобильная турбина? Для раскрытия данной темы понадобятся следующие тезисы:

Для чего нужна автомобильная турбина

Автомобильная турбина вместе с компрессором является одним из компонентов, необходимых для активации так называемого турбонагнетателя (турбонаддува). Это устройство служит для увеличения объема воздуха внутри двигателя, повышения его производительности и мощности при движении автомобиля. В частности, турбина представляет собой горячую сторону турбокомпрессора и активируется благодаря горячим выхлопным газам автомобиля. Её коллега, компрессор, напротив, представляет собой холодную сторону, выполняющую поглощение воздуха, который потом сжимается.

Турбина используется для сбора кинетической энергии и энтальпии (термодинамического потенциала), создаваемых газами, а затем для её преобразования в механическую энергию, которая используется для приведения в действие рабочего колеса компрессора. Последний сжимает воздух и поставляет его во впускной коллектор, таким образом, обеспечивая цилиндры двигателя возрастанием объема воздуха и, следовательно, большей мощностью для автомобиля.

Внешний вид автомобильной турбины

Часто автомобильные турбины называют «улитками». И в самом деле, внешний вид турбины напоминает моллюска. Но, в отличие от медлительной улитки, турбина способна внутри себя отработать мощную энергию для высокой производительности авто. Если рассматривать современную турбину с компрессором, но данный агрегат состоит из двух «улиток», одна проводит отработанные газы, а вторая прокачивает воздух в цилиндры. Но в комплексе система называется «турбонаддув», и состоит из множества деталей.

Автомобильная турбина в разрезе

Основным компонентом турбины с нагнетателем, который выполняет главную функцию, является крыльчатка с лопатками. Она вращается на высокой скорости до 200 000 оборотов в минуту, и действует как компрессор, закачивая поток воздуха в камеру турбины. Далее воздух сжимается, и уменьшается его объем. Но по законам физики, сжатый воздух способен нагреваться. И тут инженеры продумали отличное решение – использовали принцип промежуточного охлаждения воздуха.

Так появилась деталь под названием «интеркулер». Он стал теплообменником, охлаждающим воздух благодаря хладагенту. Интеркулер также увеличивает мощность мотора до 20%, и предотвращает детонацию выхлопного газа.

Если ли разница между турбиной в дизельном и бензиновом двигателе? Её практически нет. Главное отличие – это степень наддува. В дизельных двигателях необходимо большое давление, и по этой причине в них более мощные нагнетатели воздуха. Бензиновые двигатели оснащены нагнетателями меньшей мощности, поскольку высокое давление в камере сгорания способно привести к детонации.

Где расположена турбина в авто

Где находится турбина в машине? Всё очень просто – «улитку» легко распознать и найти встроенной в сам двигатель. Как правило, двигатели современных автомобилей оснащены турбонаддувом. Все дизельные и спортивные автомобили обязательно со встроенными турбинами, ибо без них невозможно развить необходимую мощность для пробега.

Турбина в двигателе автомобиля (“улитка”)

Если в заводской модели авто есть турбокомпрессор, владельцу не нужно будет беспокоиться о каких-либо дополнительных деталях, потому что двигатель транспортного средства уже разработан для обработки мощности, генерируемой турбиной. В случае отсутствии турбины в машине, лучше обратиться к специалисту, который поможет выбрать подходящую модель турбины под двигатель и модель авто.

Принцип работы турбины. Как работает турбонаддув

Турбонаддув — вид наддува, при котором воздух в цилиндры двигателя подается под давлением за счет использования энергии отработавших газов.

В настоящее время турбонаддув является наиболее эффективной системой повышения мощности двигателя без увеличения частоты вращения коленчатого вала и объема цилиндров. Помимо повышения мощности турбонаддув обеспечивает экономию топлива в расчете на единицу мощности и снижение токсичности отработавших газов за счет более полного сгорания топлива.

Система турбонаддува применяется как на бензиновых, так и на дизельных двигателях. Вместе с тем, наиболее эффективен турбонаддув на дизелях вследствие высокой степени сжатия двигателя и относительно невысокой частоты вращения коленчатого вала. Сдерживающими факторами применения турбонаддува на бензиновых двигателях являются возможность наступления детонации, которая связана с резким увеличением частоты вращения двигателя, а также высокая температура отработавших газов (1000°С против 600°С у дизелей) и соответствующий нагрев турбонагнетателя.

Несмотря на различия в конструкции отдельных систем, можно выделить следующее общее устройство турбонаддува — воздухозаборник и далее последовательно воздушный фильтр, дроссельная заслонка, турбокомпрессор, интеркулер, впускной коллектор. Все элементы объединяют соединительные патрубки и напорные шланги.

Большинство элементов турбонаддува являются типовыми элементами впускной системы. Отличительной особенностью турбонаддува является наличие турбокомпрессора, интеркулера и новых конструктивных элементов управления.

Турбокомпрессор (другое наименование – турбонагнетатель, газотурбинный нагнетатель) является основным конструктивным элементом турбонаддува и обеспечивает повышение давления воздуха во впускной системе. Конструкция турбокомпрессора объединяет два колеса — турбанное и компрессорное, расположенные на валу ротора. Каждое из колес, а также вал с подшипниками помещены в отдельные корпуса.

Турбинное колесо воспринимает энергию отработавших газов. Колесо вращается в корпусе специальной формы. Турбинное колесо и корпус турбины изготавливаются из жаропрочных материалов (сплавы, керамика).

Компрессорное колесо всасывает воздух, сжимает и нагнетает его в цилиндры двигателя. Компрессорное колесо также вращается в специальном корпусе.

Турбинное и компрессорное колеса жестко закреплены на валу ротора. Вал вращается в подшипниках скольжения. Подшипники плавающего типа, т.е. имеют зазор со стороны корпуса и вала. Подшипники смазываются моторным маслом системы смазки двигателя. Масло подается по каналам в корпусе подшипников. Для герметизации масла на валу установлены уплотнительные кольца.

В некоторых конструкциях бензиновых двигателей для улучшения охлаждения дополнительно к смазке применяется жидкостное охлаждение турбонагнетателей. Корпус подшипников турбонагнеталея включен в двухконтурную систему охлаждения двигателя.

Интеркулер предназначен для охлаждения сжатого воздуха. За счет охлаждения сжатого воздуха повышается его плотность и увеличивается давление. Интеркулер представляет собой радиатор воздушного или жидкостного типа .

Основным элементом управления системы турбонаддува является регулятор давления наддува, который представляет собой перепускной клапан (вейстгейт, wastegate). Клапан ограничивает энергию отработавших газов, направляя их часть в обход турбинного колеса, тем самым обеспечивает оптимальное давление наддува. Клапан имеет пневматический или электрический привод. Срабатывание перепускного клапана производится на основании сигналов датчика давления наддува системой управления двигателем.

В воздушном тракте высокого давления (после компрессора) может устанавливаться предохранительный клапан. Он защищает системы от скачка давления воздуха, который может произойти при резком закрытии дроссельной заслонки. Избыточное давление может стравливаться в атмосферу с помощью блуофф-клапана (blowoff) или перепускаться на вход компрессора с помощью байпас-клапана (bypass).

Принцип работы системы турбонаддува

Работа системы турбонаддува основана на использовыании энергии отработавших газов. Отработавшие газы вращают турбинное колесо, которое через вал ротора вращает компрессорное колесо. Компрессорное колесо сжимает воздух и нагнетает его в систему. Нагретый при сжатии воздух охлаждается в интеркулере и поступает в цилиндры двигателя.

Несмотря на то, что турбонаддув не имеет жесткой связи с коленчатым валом двигателя, эффективность работы системы во многом зависит от числа оборотов двигателя. Чем выше частота вращения коленчатого вала двигателя, тем выше энергия отработавших газов, быстрее вращается турбина, больше сжатого воздуха поступает в цилиндры двигателя.

В силу конструкции, турбонаддув имеет ряд негативных особенностей, среди которых с одной стороны задержка увеличения мощности двигателя при резком нажатии на педаль газа, т.н. «турбояма» (turbolag), с другой — резкое увеличение давления наддува после преодоления «турбоямы», т.н. «турбоподхват».

«Турбояма» обусловлена инерционностью системы (для повышения давления наддува при резком нажатии на педаль газа требуется определенное время), которая приводит к несоответствию между потребной мощностью и производительностью компрессора. Существует несколько способов решения данной проблемы:

  1. применение турбины с изменяемой геометрией;
  2. использование двух последовательных или параллельных турбокомпрессоров (twin-turbo или bi-turdo);
  3. комбинированный наддув.

Турбина с изменяемой геометрией (VNT – турбина) обеспечивает оптимизацию потока отработавших газов за счет изменения площади входного канала. Турбины с изменяемой геометрией нашли широкое применение в турбонаддуве дизельных двигателей, к примеру турбонаддув двигателя TDI от Volkswagen.

Система с двумя параллельными турбокомпрессорами применяется в основном на мощных V-образных двигателях (по одному на каждый ряд цилиндров). Принцип работы системы основан на том, что две маленькие турбины обладают меньшей инерцией, чем одна большая.

При установке на двигатель двух последовательных турбин максимальная производительность системы достигается за счет использования разных турбокомпрессоров на разных оборотах двигателя. Некоторые производители идут еще дальше и устанавливают три последовательных турбокомпрессора — triple-turbo (BMW) и даже четыре турбокомпрессора — quad-turbo (Bugatti).

Комбинированный наддув (twincharger) объединяет механический и турбонаддув. На низких оборотах коленчатого вала двигателя сжатие воздуха обеспечивает механический нагнетатель. С ростом оборотов подхватывает турбокомпрессор, а механический нагнетатель отключается. Примером такой системы является двойной наддув двигателя TSI от Volkswagen.

Значение слова турбина

Турбина в словаре кроссвордиста

турбина
  • Двигатель, в котором энергия пара, газа или движущейся воды преобразуется в механическую работу.
  • Первичный двигатель с вращательным движением рабочего органа.
  • Авиационный двигатель

Турбина Турби́на ( от — «вихрь, вращение») — лопаточная машина, в которой происходит преобразование кинетической энергии и/или внутренней энергии рабочего тела (пара, газа, воды) в механическую работу на валу.

ж.Двигатель с быстрым вращательным движением рабочего органа, преобразующий энергию воды, пара или газа в механическую энергию.

Большой современный толковый словарь русского языка

( фр. turbine лат. turbo (tour-binis) вихрь, вращение) лопаточный двигатель, преобразующий энергию потока рабочего тела (пара, газа, воды), протекающего через направляющий (сопловой) аппарат и рабочие лопатки ротора (рабочего колеса), в энергию вращающегося вала; турбины бывают паровые, водяные, газовые.

Новый словарь иностранных слов

ж. Лопаточный двигатель, преобразующий энергию воды, пара, газа в механическую энергию.

Новый толково-словообразовательный словарь русского языка Ефремовой

машина, с лежачим водяным колесом.

[фр. turbineлопаточный двигатель, преобразующий энергию потока рабочего тела (пара, газа, воды), протекающего через направляющий (сопловой) аппарат и рабочие лопатки ротора (рабочего колеса), в энергию вращающегося вала; турбины бывают паровые, водяные, газовые.

Словарь иностранных выражений

двигатель, в котором энергия пара, газа или движущейся воды преобразуется в механическую работу Паровая, газовая, гидравлическая т.

Словарь русского языка Ожегова

(франц. turbine, от лат. turbo — вихрь, вращение с большой скоростью), первичный двигатель с вращательным движением рабочего органа — ротора, преобразующий в механическую работу кинетическую энергию подводимого рабочего тела — пара, газа, воды. Струя рабочего тела воздействует на лопатки, закрепленные по окружности ротора, и приводит ротор в движение. По принципу действия различают активные и реактивные турбины, по конструкции — одно- и многоступенчатые. Паровые и газовые турбины подразделяются на стационарные (для привода генераторов электрического тока, компрессоров и т. д.) и транспортные. Гидравлические турбины строят только стационарными и используют на ГЭС для привода гидрогенераторов.

Современный толковый словарь, БСЭ

турбина ж. Лопаточный двигатель, преобразующий энергию воды, пара, газа в механическую энергию.

Толковый словарь Ефремовой

турбины, ж. (от латин. turbo – вертящийся предмет) (тех.). Двигатель с вращательным движением, в к-ром используется энергия пара, газа или движущейся воды, преобразуемая в механическую работу. Гидравлическая турбина. Паровая турбина. Газовая турбина.

Толковый словарь русского языка Ушакова

(французское turbine, от лат. turbo, родительный падеж turbinis — вихрь, вращение с большой скоростью), первичный двигатель с чисто вращательным движением рабочего органа — ротора и непрерывным рабочим процессом, преобразующий в механическую работу кинетическую энергию подводимого рабочего тела — пара, газа или воды. Стационарные паровые и газовые Т. применяют для привода генераторов электрического тока (турбогенераторы), центробежных компрессоров и воздуходувок (турбокомпрессоры, турбовоз духодувки), питательных, топливных и масляных насосов (турбонасосы). Транспортные паровые и газовые Т. используют в качестве главных судовых двигателей . Газовые Т. используются также в качестве авиационных двигателей (турбовинтовые и турбореактивные двигатели) и в отдельных случаях — на локомотивах ( газотурбовозы ) и специальных автомобилях, требующих особо мощных двигателей. Гидравлические Т. строят только в стационарном исполнении для привода тихоходных генераторов электрического тока (гидрогенераторы) на гидроэлектрических станциях . К 1976 мощность паровых Т. достигла 1300 Мвт, газовых — 100 Мвт, гидравлических — более 600 Мвт в агрегате. Благодаря хорошей экономичности, компактности, надёжности и возможности осуществить большую единичную мощность Т. практически вытеснили поршневые паровые машины из современной мировой энергетики. См. также ст. Газовая турбина , Гидротурбина , Паровая турбина .С. М. Лосев.

Большая советская энциклопедия, БСЭ

турбина, -ы

Полный орфографический словарь русского языка

двигатель с вращательным движением, в котором используется энергия пара, газа или движущейся воды, преобразуемая в механическую работу

Число паротурбинных агрегатов (ПТА), главных турбозубчатых агрегатов (ГТЗА), паровых машин (ПМ) (число и тип турбин в каждом из агрегатов: турбина высокого давления (ТВД); турбина среднего давления (ТСД); турбина низкого давления (ТНД); турбина с крейсерской ступенью (Т с КрСт); крейсерская турбина (КрТ), фирма или организация-разработчик – мощность механизмов в лошадиных силах (л.с.) (суммарная контрактная или на приемных испытаниях) количество машинных отделений (МО), число котлов (рабочее давление; температура; тип и модификация; топливо) количество котельных отделений КО.

Число паротурбинных агрегатов (ПТА); главных турбозубчатых агрегатов (ГТЗА); паровых машин (ПМ) с указанием числа турбин и типа паротурбин в каждом из агрегатов: турбина высокого давления (ТВД); турбина среднего давления (ТСД); турбина низкого давления (ТНД); турбина с крейсерской ступенью (Т с КрСт); турбина крейсерского хода (Т КрХ).

Несколько уступают «транспортным достижениям» открытия, которые можно условно объединить темой «орудия труда» (14 изобретений) Рассказы об этих выдающихся, на наш взгляд, достижениях можно найти в главах: «Рубило», «Рукоятка», «Прялка и ткацкий станок», «Гончарный круг», «Рычаг, блок и наклонная плоскость», «Мельница», «Механические часы», «Прядильная машина», «Суппорт», «Паровой молот», «Прокатный стан», «Гидравлический пресс», «Бутылочный автомат» и «Робот» На третьем месте (10 изобретений) оказались достижения в сфере освоения новых материалов (главы «Сверление, пиление и шлифовка камня», «Бронза», «Железо», «Бумага», «Доменная печь», «Литая сталь», «Железобетон», «Электролиз алюминия», «Синтетический каучук» и «Пластмассы»), а на четвертом 8 изобретений в сфере энергетики (главы «Паровая машина», «Электрогенератор», «Гидротурбина», «Паровая турбина », «Газовый и бензиновый двигатель», «Электродвигатель», «Дизель» и «Атомная электростанция»).

По-другому сложно объяснить то, что срок жизни второго гидроагрегата по всем техническим параметрам практически истек, но при этом не была заказана новая турбина и даже не был разработан план мероприятий по дальнейшей безопасной эксплуатации турбины , которая выработала свой ресурс» [16].

развивали 2435 об/мин ( турбина высокого давления) и 1568 об/мин (низкого давления), и для передачи вращения на вал использовался одноступенчатый редуктор, находившийся в отдельном отсеке между обоими турбинными отделениями.

Рабочие и инженеры «Красного путиловца» (Кировского завода) создали первый советский трактор, в цехах Металлического завода родилась первая советская турбина , на Ижорском заводе — первый советский блюминг.

Устройство и принцип работы турбины

by admin · Апрель 1, 2010

Турбина (турбокомпрессор) стала определяющим агрегатом в деле увеличения мощности моторов.

Что такое турбина и для чего она нужна?

Турбина — устройство в автомобиле, которое направлено на увеличение давления во впускном коллекторе автомобиля для того, чтобы обеспечить большее поступление воздуха, а значит и кислорода, в камеру сгорания.
Главное назначение турбины – с ее помощью можно значительно увеличить мощность автомобиля. При увеличении давления во впускном коллекторе на 1 атмосферу в камеру сгорания попадет в два раза больше кислорода, а значит от небольшого турбового двигателя можно ожидать мощности как от атмосферника с объемом в два раза больше — грубая теоретическая арифметика не лишенная смысла…

Принцип работы турбокомпрессора

Принцип работы турбины несложен: горячие выхлопные газы через выпускной коллектор поступают в горячую часть турбины, проходят через крыльчатку горячей части приводя ее и вал на который она крепится в движение. На этом же вале закреплена крыльчатка самого компрессора в холодной части турбины, эта крыльчатка при вращении создает давление во впускном тракте и впускном коллекторе, что обеспечивает большее поступление воздуха в камеру сгорания.

Устройство турбины

Турбина состоит из двух улиток — улитки компрессора, через которую всасывается воздух и нагнетается во впускной коллектор, и улитки горячей части, через которую проходят выхлопные газы вращая колесо турбины и выходят в выхлопной тракт. Из крыльчатки компрессора и крыльчатки горячей части. Из шарикоподшипникового картриджа. Из корпуса, который соединяет обе улитки, держит подшипники, так же в корпусе находится охлаждающий контур.

В процессе работы турбина подвергается очень большим термодинамическим нагрузкам. В горячую часть турбины попадают выхлопные газы очень большой температуры 800-9000 °С, поэтому корпус турбины изготавливают из чугуна особого состава и особого способа отливки.

Частота вращения вала турбины достигает 200 000 об/мин и более, поэтому изготовление деталей требует большой точности, подгонки и балансировки. Помимо этого в турбине высокие требования к используемым смазочным материалам. В некоторых турбинах система смазки служит так е системой охлаждения подшипниковой части турбины.

Система охлаждения турбин

Система охлаждения турбин двигателя служит для улучшения теплоотдачи частей и механизмов турбокомпрессора.
Существует два самых распространенных способа охлаждения деталей турбокомпрессора — охлаждение маслом, которое используется для смазки подшипников и комплексное охлаждение маслом и антифризом из общей системы охлаждения автомобилем.

Оба способа имеют ряд преимуществ и недостатков.
Охлаждение маслом.
Преимущества:

  • Более простая конструкция
  • Меньшая стоимость изготовления самой турбины
  • Меньшая эффективность охлаждения по сравнению с комплексной системой
  • Более требовательна к качеству масла и к его более частой смене
  • Более требовательна к контролю за температурным режимом масла

Изначально, большинство серийных двигателей с турбонаддувом оснащались тубинами с масляным охлаждением. При прохождении через шарикоподшипниковую часть масло сильно нагревалось. Тогда, когда температура выходила за пределы нормального рабочего температурного диапазона, масло начинало закипать, коксоваться забивая каналы и ограничивая доступ смазки и охлаждения к подшипникам. Это приводило к быстрому износу, заклиниванию и дорогостоящему ремонту. Причин у неполадки могло быть несколько — некачественной масло или не рекомендованное для данного типа двигателей, превышение рекомендованы сроков замены масла, неисправности в системе смазки двигателя и пр.

Комплексное охлаждение маслом и антифризом
Преимущества:

  • Большая эффективность охлаждения
  • Более сложная конструкция самого турбокомпрессора, как следствие большая стоимость

При охлаждении турбины маслом и антифризом повышается эффективность и такие проблемы, как закипание и коксование масла, практически не встречаются. Но данная систем охлаждения имеет более сложную конструкцию т.к. имеет раздельные масляный контур и контур охлаждающей жидкости. Масло как и прежде служит для смазки подшипников и для охлаждения, а антифриз, который используется из общей системы охлаждения двигателя, не дает перегреться и закипеть маслу. Как следствие увеличивается стоимость самой конструкции.

При работе турбины воздух под действием компрессора сжимается и, как следствие, очень сильно греется, что приводит к нежелательным последствиям т.к. чем выше температура воздуха, тем меньшее количество кислорода в нем содержится — тем меньше эффективность наддува. С этим явлением призван бороться интеркулер — промежуточный охладитель воздуха.

Нагрев воздуха не единственная проблема, с которой пытаются справиться конструкторы при проектировании турбодвигателя. Насущной проблемой является инерционность турбины (лаг турбины, турбояма) — задержка в реакции мотора на открытие дроссельной заслонки. Турбина выходит на пик своих возможностей при определенных оборотах двигателя, отсюда и появилось мнение, что турбина включается при определенных оборотах. Турбина в большинстве случаев, работает всегда, а значение оборотов при которых ее эффективность максимальная у каждого двигателя и у каждой турбины разные. В погоне за решением этой проблемы появились системы их двух турбин (твин-турбо, twin-turbo, би-турбо, biturbo), твин-скрол (twin-scroll) турбины, турбины с изменяемой геометрией сопла и изменяемым углом наклона крыльчатки (VGT), изменяются материалы частей чтобы повысить прочность и увеличить вес (керамические лопатки крыльчатки) и пр.

Twin-turbo (твин-турбо) — система при которой используются две одинаковые турбины. Задача данной системы повысить объем или давление поступающего воздуха. Используется когда необходима максимальная мощность на высоких оборотах, например в драг-рейсинге. Такая система реализована на легендарном японском автомобиле Nissan Skyline Gt-R с двигателем rb26-dett.

Такая же система, но с маленькими одинаковыми турбинами позволяет добиться прироста мощности при небольших оборотах и держать наддув постоянным до красной зоны.

Biturbo (би-турбо) — систем а с двумя разными турбинами, которые соединены последовательно. Система устроена таким образом, что при низких оборотах работает маленькая турбина, обеспечивая хороший отклик на малых оборотах, при определенных условиях «включается» большая турбина и обеспечивает наддув при высоких оборотах. Это позволяет автомобилю уменьшить лаг двигателя и получить хороший прирост производительности во всем диапазоне работы двигателя.

Такая систем турбонаддува используется в автомобилях BMW biturbo.

Турбина с изменяемой геометрией (VGT) — система при которой лопатки крыльчатки в горячей части могут изменять угол наклона к потоку выхлопных газов.

При малых оборотах двигателя пропускное сечение прохода выхлопных газов становится более узкое и «выхлоп» проходит с большей скоростью и большей отдачей энергии. Когда обороты двигателя увеличиваются проходное сечение становится шире и и уменьшается сопротивление движению выхлопных газов, но при этом достаточно энергии для создания необходимого давления компрессором. Чаще систему VGT используют на дизельных двигателях т.к. там меньше тепловые нагрузки, меньшая скорость вращения ротора турбины.

Twin-scroll ( двойная улитка) — система состоит из двойного контура движения выхлопных газов энергия которых вращает один ротор с крыльчаткой и компрессором. При этом существует два типа реализации когда выхлопные газы идут по обоим контурам сразу, при этом система работает как twin-turbo в одном корпусе — выхлопные газы делятся на два потока каждый из которых идут в свой контур горячей части раскручивая ротор турбины. Второй тип реализации работает на подобии системы biturbo — горячая часть имеет два контура с разной геометрией, при низких оборотах выхлопные газы направляются по меньшему контуру, который увеличивает скорость и энергию прохождения за счет небольшого диаметра, при повышении оборотов двигателя выхлопные газы двигаются по контуру диаметр которого больше — тем самым сохраняется рабочее давление в системе впуска и не создается запора на пути выхлопных газов. Это все регулируется клапанами, которые переключают поток из одного контура в другой.

Значение слова «турбина»

ТУРБИ́НА, -ы, ж. Двигатель, с вращательным движением рабочего органа (ротора), преобразующий энергию пара, газа, воды в механическую работу.

[Франц. turbine от лат. turbo, turbinis — вихрь, волчок, веретено]

Источник (печатная версия): Словарь русского языка: В 4-х т. / РАН, Ин-т лингвистич. исследований; Под ред. А. П. Евгеньевой. — 4-е изд., стер. — М.: Рус. яз.; Полиграфресурсы, 1999; (электронная версия): Фундаментальная электронная библиотека

  • Турби́на (фр. turbine от лат. turbo — вихрь, вращение) — ротационный двигатель с непрерывным рабочим процессом и вращательным движением рабочего органа (ротора), преобразующий кинетическую энергию и/или внутреннюю энергию рабочего тела (пара, газа, воды) в механическую работу. Струя рабочего тела воздействует на лопатки, закреплённые по окружности ротора, и приводит их в движение.

Применяется в качестве привода электрического генератора на тепловых, атомных и гидро электростанциях, как составная часть приводов на морском, наземном и воздушном транспорте, а также гидродинамической передачи, гидронасосах.

ТУРБИ’НА, ы, ж. [от латин. turbo — вертящийся предмет] (тех.). Двигатель с вращательным движением, в к-ром используется энергия пара, газа или движущейся воды, преобразуемая в механическую работу. Гидравлическая т. Паровая т. Газовая т.

Источник: «Толковый словарь русского языка» под редакцией Д. Н. Ушакова (1935-1940); (электронная версия): Фундаментальная электронная библиотека

турби́на

1. техн. двигатель с вращательным движением, в котором используется энергия пара, газа или движущейся воды, преобразуемая в механическую работу ◆ Гидравлическая турбина. ◆ Паровая турбина. ◆ Газовая турбина.

Фразеологизмы и устойчивые сочетания
  • аварийная авиационная турбина

Делаем Карту слов лучше вместе

Привет! Меня зовут Лампобот, я компьютерная программа, которая помогает делать Карту слов. Я отлично умею считать, но пока плохо понимаю, как устроен ваш мир. Помоги мне разобраться!

Спасибо! Я обязательно научусь отличать широко распространённые слова от узкоспециальных.

Насколько понятно значение слова конголезец (существительное):

0 0 голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector